Quantum correction for electron transfer rates. Comparison of polarizable versus nonpolarizable descriptions of solvent
نویسندگان
چکیده
The electron transfer rate constant is treated using the spin-boson Hamiltonian model. The spectral density is related to the experimentally accessible data on the dielectric dispersion of the solvent, using a dielectric continuum approximation. On this basis the quantum correction for the ferrous-ferric electron transfer rate is found to be a factor 9.6. This value is smaller than the corresponding result (36) of Chandler and co-workers in their pioneering quantum simulation using a molecular model of the system [J. S. Bader, R. A. Kuharski, and D. Chandler, J. Chem. Phys. 93, 230 ( 1990)]. The likely reason for the difference lies in use of a rigid water molecular model in the simulation, since we tid that other models for water in the literature which neglect the electronic and vibrational polarizability also give a large quantum effect. Such models are shown to overestimate the dielectric dispersion in one part of the quantum mechanically important region and to underestimate it in another part. It will be useful to explore a polar&able molecular model which reproduces the experimental dielectric response over the relevant part of the frequency spectrum.
منابع مشابه
CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model
A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential. The proteins include 1FSV, 1ENH, 1PGB, 1VII, 1H8K, and 1CRN, representing both helical and beta-sheet secondary structural elements. Constant pressure and temperature (NPT) molecular dynamics simulations are performed on...
متن کاملVariational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent.
Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product...
متن کاملPolarizable and nonpolarizable force fields for alkyl nitrates.
Quantum-chemistry-based many-body polarizable and two-body nonpolarizable atomic force fields were developed for alkyl nitrate liquids and pentaerythritol tetranitrate (PETN) crystal. Bonding, bending, and torsional parameters, partial charges, and atomic polarizabilities for the polarizable force field were determined from gas-phase quantum chemistry calculations for alkyl nitrate oligomers an...
متن کاملSolvation energies and electronic spectra in polar, polarizable media: Simulation tests of dielectric continuum theory
A dielectric continuum theory for the solvation of a polar molecule in a polar, polarizable solvent is tested using computer simulations of formaldehyde in water. Many classes of experiments, for example those which measure solvent-shifted vertical transition energies or electron transfer rates, require an explicit consideration of the solvent electronic polarization. Due to the computational c...
متن کاملSolvent influence on the interaction of cis-PtCl2(NH3)2 complex and graphene: A theoretical study
In this study the interaction of cis-PtCl2(NH3)2 complex and graphene were investigated with MPW1PW91method in gas and solvent phases. The solvent effect was examined by the self-consistent reaction fieldtheory (SCRF) based on Polarizable Continuum Model (PCM). The selected solvents were chloroform,chlorobenzene, bromoethane, dimethyldisulfide, and dichloroethane. The solvent ...
متن کامل